Generating pairing-friendly parameters for the CM construction of genus 2 curves over prime fields
نویسندگان
چکیده
We present two contributions in this paper. First, we give a quantitative analysis of the scarcity of pairing-friendly genus 2 curves. This result is an improvement relative to prior work which estimated the density of pairing-friendly genus 2 curves heuristically. Second, we present a method for generating pairing-friendly parameters for which ρ ≈ 8, where ρ is a measure of efficiency in pairing-based cryptography. This method works by solving a system of equations given in terms of coefficients of the Frobenius element. The algorithm is easy to understand and implement.
منابع مشابه
Constructing Pairing-Friendly Genus 2 Curves with Ordinary Jacobians
We provide the first explicit construction of genus 2 curves over finite fields whose Jacobians are ordinary, have large prime-order subgroups, and have small embedding degree. Our algorithm is modeled on the Cocks-Pinch method for constructing pairing-friendly elliptic curves [5], and works for arbitrary embedding degrees k and prime subgroup orders r. The resulting abelian surfaces are define...
متن کاملConstructing pairing-friendly genus 2 curves over prime fields with ordinary Jacobians
We provide the first explicit construction of genus 2 curves over finite fields whose Jacobians are ordinary, have large prime-order subgroups, and have small embedding degree. Our algorithm works for arbitrary embedding degrees k and prime subgroup orders r. The resulting abelian surfaces are defined over prime fields Fq with q ≈ r. We also provide an algorithm for constructing genus 2 curves ...
متن کاملConstructing pairing-friendly hyperelliptic curves using Weil restriction
A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become ...
متن کاملGenerating More Kawazoe-Takahashi Genus 2 Pairing-Friendly Hyperelliptic Curves
Constructing pairing-friendly hyperelliptic curves with small ρ-values is one of challenges for practicability of pairing-friendly hyperelliptic curves. In this paper, we describe a method that extends the Kawazoe-Takahashi method of generating families of genus 2 ordinary pairing-friendly hyperelliptic curves by parameterizing the parameters as polynomials. With this approach we construct genu...
متن کاملThe 2-Adic CM Method for Genus 2 Curves with Application to Cryptography
The complex multiplication (CM) method for genus 2 is currently the most efficient way of generating genus 2 hyperelliptic curves defined over large prime fields and suitable for cryptography. Since low class number might be seen as a potential threat, it is of interest to push the method as far as possible. We have thus designed a new algorithm for the construction of CM invariants of genus 2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 67 شماره
صفحات -
تاریخ انتشار 2010